Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response.
نویسندگان
چکیده
Phospholipase D (PLD) and its product, phosphatidic acid (PA), play key roles in cellular processes, including stress and hormonal responses, vesicle trafficking, and cytoskeletal rearrangements. We isolated and functionally characterized Arabidopsis thaliana PLDzeta2, which is expressed in various tissues and enhanced by auxin. A PLDzeta2-defective mutant, pldzeta2, and transgenic plants deficient in PLDzeta2 were less sensitive to auxin, had reduced root gravitropism, and suppressed auxin-dependent hypocotyl elongation at 29 degrees C, whereas transgenic seedlings overexpressing PLDzeta2 showed opposite phenotypes, suggesting that PLDzeta2 positively mediates auxin responses. Studies on the expression of auxin-responsive genes and observation of the beta-glucuronidase (GUS) expression in crosses between pldzeta2 and lines containing DR5-GUS indicated that PLDzeta2, or PA, stimulated auxin responses. Observations of the membrane-selective dye FM4-64 showed suppressed vesicle trafficking under PLDzeta2 deficiency or by treatment with 1-butanol, a PLD-specific inhibitor. By contrast, vesicle trafficking was enhanced by PA or PLDzeta2 overexpression. Analyses of crosses between pldzeta2 and lines containing PIN-FORMED2 (PIN2)-enhanced green fluorescent protein showed that PLDzeta2 deficiency had no effect on the localization of PIN2 but blocked the inhibition of brefeldin A on PIN2 cycling. These results suggest that PLDzeta2 and PA are required for the normal cycling of PIN2-containing vesicles as well as for function in auxin transport and distribution, and hence auxin responses.
منابع مشابه
Arabidopsis PLDz2 Regulates Vesicle Trafficking and Is Required for Auxin Response W
Phospholipase D (PLD) and its product, phosphatidic acid (PA), play key roles in cellular processes, including stress and hormonal responses, vesicle trafficking, and cytoskeletal rearrangements. We isolated and functionally characterized Arabidopsis thaliana PLDz2, which is expressed in various tissues and enhanced by auxin. A PLDz2-defective mutant, pldz2, and transgenic plants deficient in P...
متن کاملThe caspase-related protease separase (extra spindle poles) regulates cell polarity and cytokinesis in Arabidopsis.
Vesicle trafficking plays an important role in cell division, establishment of cell polarity, and translation of environmental cues to developmental responses. However, the molecular mechanisms regulating vesicle trafficking remain poorly understood. Here, we report that the evolutionarily conserved caspase-related protease separase (extra spindle poles [ESP]) is required for the establishment ...
متن کاملThe Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth
Exchange factors for ARF GTPases (ARF-GEFs) regulate vesicle trafficking in a variety of organisms. The Arabidopsis protein GNOM is a brefeldin A (BFA) sensitive ARF-GEF that is required for the proper polar localization of PIN1, a candidate transporter of the plant hormone auxin. Mutations in GNOM lead to developmental defects that resemble those caused by interfering with auxin transport. Bot...
متن کاملArabidopsis choline transporter-like 1 (CTL1) regulates secretory trafficking of auxin transporters to control seedling growth
Auxin controls a myriad of plant developmental processes and plant response to environmental conditions. Precise trafficking of auxin transporters is essential for auxin homeostasis in plants. Here, we report characterization of Arabidopsis CTL1, which controls seedling growth and apical hook development by regulating intracellular trafficking of PIN-type auxin transporters. The CTL1 gene encod...
متن کاملSubcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1.
The directional flow of the plant hormone auxin mediates multiple developmental processes, including patterning and tropisms. Apical and basal plasma membrane localization of AUXIN-RESISTANT1 (AUX1) and PIN-FORMED1 (PIN1) auxin transport components underpins the directionality of intercellular auxin flow in Arabidopsis thaliana roots. Here, we examined the mechanism of polar trafficking of AUX1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 19 1 شماره
صفحات -
تاریخ انتشار 2007